
ADVANCED HUMANA NUTRION

FOURTH EDITION

Denis M. Medeiros Robert E. C. Wildman

ADVANCED HUMANA NUTRION

FOURTH EDITION

Denis M. Medeiros, PhD, RD, LD

Dean Emeritus of the School of Graduate Studies Professor Emeritus of Biochemistry and Molecular Biology University of Missouri at Kansas City Kansas City, Missouri

And

Professor Emeritus Department of Food, Nutrition, Dietetics, and Health Kansas State University Manhattan, Kansas

Robert E. C. Wildman, PhD, RD, LD, FISSN

Department of Nutrition and Food Sciences Texas Woman's University Denton, Texas World Headquarters Jones & Bartlett Learning 5 Wall Street Burlington, MA 01803 978-443-5000 info@jblearning.com www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional associations, and other qualified organizations. For details and specific discount information, contact the special sales department at Jones & Bartlett Learning via the above contact information or send an email to specialsales@jblearning.com.

Copyright © 2019 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones & Bartlett Learning, LLC. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement or recommendation by Jones & Bartlett Learning, LLC and such reference shall not be used for advertising or product endorsement purposes. All trademarks displayed are the trademarks of the parties noted herein. *Advanced Human Nutrition, Fourth Edition* is an independent publication and has not been authorized, sponsored, or otherwise approved by the owners of the trademarks or service marks referenced in this product.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate in the activities represented in the images. Any screenshots in this product are for educational and instructive purposes only. Any individuals and scenarios featured in the case studies throughout this product may be real or fictitious, but are used for instructional purposes only.

Production Credits

VP, Product Management: David D. Cella Director of Product Management: Cathy L. Esperti Product Manager: Sean Fabery Product Assistant: Hannah Dziezanowski Vendor Manager: Nora Menzi Director of Marketing: Andrea DeFronzo VP, Manufacturing and Inventory Control: Therese Connell Composition and Project Management: SourceHOV LLC Cover Design: Kristin E. Parker Rights & Media Specialist: Robert Boder Media Development Editor: Shannon Sheehan Cover Image: © winvic/iStock/Getty; © MIKHAIL GRACHIKOV/ Shutterstock. Printing and Binding: Edwards Brothers Malloy Cover Printing: Edwards Brothers Malloy

Library of Congress Cataloging-in-Publication Data

Names: Medeiros, Denis M., author. | Wildman, Robert E. C., 1964- author.
Title: Advanced human nutrition / Denis M. Medeiros and Robert E.C. Wildman.
Description: Fourth edition. | Burlington, MA : Jones & Barlett Learning,
[2019] | Includes bibliographical references and index.
Identifiers: LCCN 2017033318 | ISBN 9781284123067 (casebound : alk. paper)
Subjects: LCSH: Nutrition.

Classification: LCC QP141 .W485 2019 | DDC 612.3-dc23 LC record available at https://lccn.loc.gov/2017033318

6048

Printed in the United States of America 22 21 20 19 18 10 9 8 7 6 5 4 3 2 1 To my wife, Susan, for her patience and love; and my mother, Rita Wilkie, a proud member of "the greatest generation," for her belief in higher education. Also to my daughter, Kathryn, my stepfather, the late William P. Wilkie, and my father, the late Joseph Medeiros, for their support and love through the years.

–D.M.M.

To my children: Gage and Bryn for your love, patience, and support. Also, to my father, Dave, and nephew, Jack, as well as eternal inspiration from my brother, David, and my mother, Carol.

-R.W.

Brief Contents

© shotty/Shuttersto

Preface Acknowledgmer About the Autho		xiii xvi xvii
Chapter 1	Foundations of the Human Body	1
Chapter 2	Digestion and Absorption	35
Chapter 3	Carbohydrates: Energy, Metabolism, and More	59
Chapter 4	Dietary Fiber: Digestion and Health	95
Chapter 5	Lipids: Fatty Acids, Triglycerides, Phospholipids, and Sterols	111
Chapter 6	Proteins and Amino Acids: Function, Quantity, and Quality	147
Chapter 7	Water	191
Chapter 8	Metabolism, Energy Balance, and Body Weight and Composition	207
Chapter 9	Nutrition, Exercise, and Athletic Performance	245
Chapter 10	Fat-Soluble Vitamins	273
Chapter 11	Water-Soluble Vitamins	305
Chapter 12	Major Minerals	345
Chapter 13	Minor Minerals	373
Chapter 14	Nutraceuticals and Functional Foods	419
Glossary		439
Index		455

Contents

© shotty/Shutterstock

Preface
Acknowledgmentsxvi
About the Authors xvii
Chapter 1 Foundations of the
Human Body 1
Introduction2
Elements and Molecules2
Cell Structure and Organelles 3
Endoplasmic Reticulum
Golgi Apparatus
Endosomes, Lysosomes, and Peroxisomes7
Mitochondria
The Nucleus and Genetic
Aspects
DNA, RNA, and Genes 9
Protein Synthesis12
Nutrition and Epigenetics13
Electron Transport Chain and Oxidative Phosphorylation
Cellular Protein Functions
Organelle and Cell Membrane Structure
and Cell Receptors17
Enzymes18
Cell Signaling
Transport
Hormones
Tissue
Organ Systems
Bone and the Skeleton
Nervous Tissue 23
Skeletal Muscle25
Heart, Blood, and Circulation
Blood Pressure
Renal System

Chapter 2	Digestion and Absorption 35
Introductio	n
Gastrointes	tinal Anatomy37
Mouth.	
Stomacl	h
Small In	testine
Rugae,	, Villi, and Microvilli
Large In	testine (Colon) 39
	tinal Movement, Motility,
	al Activity40
Smooth	Muscle 40
Smooth	Muscle Excitation40
Enteric Ner	vous System40
Neurotr	ansmitters41
<i>,</i> ,	hetic and Parasympathetic
Inner	vation
Digestive Tr	ract Movements41
Gastrointes	tinal Vasculature42
Hepatic	Portal Vein
Gastrointes	tinal Endocrine and Paracrine
Substanc	es42
Gastrin.	
Cholecy	vstokinin
Secretin	
Somato	statin
Gastric I	nhibitory Polypeptide43
Motilin.	
Peptide	YY45
Histamiı	ne
Digestion a	nd Absorption47
0	of Digestion
	/ity
Saliva	Proteins: Enzymes and Mucus
Saliva	<i>Electrolytes</i>
	gus
-	ageal Sphincter
Stomacl	h

vi Contents

Intrinsic Factor
Gastric Emptying 50
Small Intestine 51
Pancreatic Digestive Juice51
Pancreatic Juice Delivery51
The Gallbladder and Bile Storage and Release 52
Bile Composition52
Gallbladder Contraction
Digestive Enzymes of the Small Intestine
Small Intestine Absorption53
Large Intestine
Probiotics
<i>Prebiotics</i>
Lymphatic System55
Here's What You Have Learned
Suggested Reading58

Chapter 3 Carbohydrates: Energy, Metabolism, and More 59

Introduction	60
Carbohydrate Types and Characteristics	60
Monosaccharides	
Monosaccharide Structures	62
Monosaccharide D and L Series	62
Monosaccharide Derivatives	62
Disaccharides	
Polysaccharides	
Oligosaccharides	
Plant Starch	63
Animal Glycogen	65
Glycosaminoglycans	65
Dietary Fiber	
Carbohydrate Intake, Food Sources,	
and Recommendations	67
Carbohydrate Consumption	67
Monosaccharides and Disaccharides	67
Added Sugars and Caloric Sweeteners	68
Cereal Grains	68
Fiber	68
Carbohydrate Recommendations	68
Dietary Fiber	69
Carbohydrate Digestion and Absorption	
Starch and Disaccharides	
Absorption of Monosaccharides	
Carbohydrate Circulation and Cellular Uptake.	
Blood Glucose Regulation	
Glycemic Index	
Glycemic Load	
	/4

Major Hormones in Carbohydrate
Metabolism
Insulin
Insulin Production
Insulin Secretion
Insulin-Mediated Glucose Uptake
Metabolic Roles of Insulin
Insulin Receptors
Glucagon
Insulin-to-Glucagon Molar Ratios80
Epinephrine80
Cortisol
Major Metabolic Pathways for
Carbohydrate83
Glycolysis
Hexokinase and Glucokinase83
Phosphofructokinase83
<i>Pyruvate Kinase</i> 84
Fate of Pyruvate
Glycogen Turnover84
Glycogen Synthesis85
Glycogen Degradation86
Pentose Phosphate Pathway
Krebs Cycle (Citric Acid Cycle)
Gluconeogenesis88
Lipogenesis91
Here's What You Have Learned
Suggested Reading94

Chapter 4 Dietary Fiber: Digestion and Health

• •••••••	95
Introduction	96
Dietary Fiber and Functional Fibers	96
Dietary Fiber	96
Functional Fiber	97
Soluble and Insoluble Fiber	97
Dietary Fiber Types and Characteristics	97
Cellulose	97
Hemicellulose	98
Pectins	100
Lignin	100
Gums	100
β -Glucans	100
Chitin and Chitosan	101
Fructans (Inulin, Oligofructose,	
and Fructo-oligosaccharides)	101
Glycosaminoglycans	101
Oligosaccharides	102
Polydextrose	102
Psyllium	102

Resistant Dextrins	
Resistant Starches	2
Carbohydrates	3
Gastrointestinal Fermentation and Health 106	5
Reduced Glycemic Effect 106	5
Cholesterol Binding and Reduction of Lipids 107	7
Fecal Bulking, Constipation, and Diverticulosis Support	7
Mineral Binding 108	8
Daily Intake and Recommendations 108	8
Here's What You Have Learned 110	С
Suggested Reading 110	С

Introduction
General Properties and Nomenclature
of Lipids
Fatty Acids
Fatty Acid Synthesis, Elongation,
and Desaturation114
Pentose Phosphate Pathway116
<i>cis</i> vs <i>trans</i> Fatty Acids116
Essential Fatty Acids117
Triglycerides118
Phospholipids119
Sterols
Molecular Control Mechanisms
of Fat Metabolism 121
Nuclear Receptors121
Non-Nuclear Receptors124
Dietary Lipids: Food Sources, Requirements,
and Digestion 125
Food Sources
Dietary Lipid Requirements
Digestion of Lipids
Intraluminal Phase
Mucosal Phase
Secretory Phase
Lipid Metabolism
Fatty Acid Oxidation
Ketone Body Production
Eicosanoids
Lipoproteins

The Health Implications and Interpretation	
of Lipoprotein-Cholesterol and Triglyceride	
Levels	141
Alcohol	143
Here's What You Have Learned	144
Suggested Reading	145

Chapter 6 Proteins and Amino Acids: Function, Quantity,

08	and Quality	147
08	Introduction	148
10	Amino Acids	148
10	Protein Structures	
	Dietary Protein and Protein Digestion	
	and Absorption	152
	Food Protein	152
11	Meat Protein	152
12	Fish Protein	152
	Milk Protein	152
12	Egg Protein	153
12	Wheat Protein	
1 /	Soy Protein	
14 16	Protein Quantity	
16 16	Protein Digestion and Absorption	
16 17	Dietary Protein Quality	
17	Roles of Amino Acids and Proteins	
10 19	in Metabolism	160
20	Enzymes	
20	Blood Components	161
21	Blood Clotting	
21	Muscle Structure and Function	
24	Endocrine Functions	
	Fluid Balance	
25	Acid–Base Balance	
25	Immunity, Transport Carriers,	
28	and Membrane Receptors	162
28	Energy Supply	163
29	Precursors to Other Biochemical Compounds	162
30		
32	Role as Carbon and Methyl Donors Other Functions	
32	Metabolism of Amino Acids	
32	Transamination and Deamination	
33 35	Synthesis of Amino Acids	
36	Degradation of Amino Acids	
	5	

Amino Acids and Neurotransmitters
Disposal of Amino Acid Nitrogen
Urea Cycle
Protein and Amino Acid Requirements 174
Protein174
Amino Acids
Amino Acid Inborn Errors of Metabolism 178
Issues with Phenylalanine Metabolism:
Phenylketonuria178
Issues with Tyrosine Metabolism
Issues with Valine, Leucine, and Isoleucine
Metabolism: Maple Syrup Urine Disease178
Issues with Methionine Metabolism
Issues with Tryptophan Metabolism
Issues with Lysine, Glycine, and Threonine Metabolism
Leucine and other Branched Chain Amino Acids
as Related to Body Composition and Obesity 182
Protein Quality, Protein Excess, and Protein
Deficiency
Determination of Protein Intakes by Food
Source Based on Limiting Amino Acids
Excess Dietary Protein185
Protein Undernutrition185
Here's What You Have Learned
Suggested Reading 190

Chapter 7 Water 191

Introduction 192
Properties and Body Distribution of Water 192
Properties192
Distribution of Water in the Human Body192
Sweat Water
Urinary Water195
Water Balance 199
Edema 202
Mechanisms for Edema Formation
Edema in Pathologic States
Here's What You Have Learned 205

Chapter 8 Metabolism, Energy Balance, and Body Weight and

Composition. 207

Introduction	208
Total Energy Expenditure and Components 2	208
Measurement of Total Energy Expenditure	208
Direct or Human Calorimetry	209

Indirect Calorimetry	209
Doubly Labeled Water	210
Components of Energy Metabolism	212
Basal Metabolism (Resting Metabolism)	212
Thermic Effect of Activity	
Thermic Effect of Food	214
Adaptive Thermogenesis	214
Metabolic States and Integrated	
Energy Metabolism	216
Cellular and Tissue Metabolism	217
Obligate Glucose Utilization	218
Transitional Metabolic States	
Metabolic Crossroads	
Fed State	
Early Refeeding	
Intermediate to Longer Fed State	
Fasting	
Starvation	
Body Weight and Composition	224
Body Weight and Health	
Body Mass Index	
Active People, Body Weight, and Health	
Body Composition	
Elements and Molecules	
Fat Mass and Fat-Free Mass	226
Body Water	227
Minerals (Ash)	227
Assessment of Body Composition	228
Body Densitometry	228
Plethysmography	
Dual-Energy X-Ray Absorptiometry	
Skinfold Assessment	
Bioelectrical Impedance Analysis	231
Regulation of Energy Intake, Storage,	
and Expenditure	232
Futile Cycle Systems	
Chemical Mediators of Energy Homeostasis	
Insulin	
Ghrelin	
Cholecystokinin	
Leptin	233
Neuropeptide Y	234
Galanin	234
Here's What You Have Learned	242
Suggested Reading	243

Introduction	246
Muscle and Exercise Basics	246

Contents ix

Muscle and Neuromuscular Junctions
Muscle Action Potentials
Sarcomeres and Contraction248
Muscle Fiber Type249
Motor Unit Recruitment
Exercise and Training Components
Muscle Adaptation to Strength Training
Muscle Adaptation to Endurance
Exercise252
Muscle Fiber Type and Endurance Adaptation252
Hormonal Adaptation to Acute
and Chronic Exercise
Catecholamines
Insulin and Glucagon
Cortisol, Growth Hormone, and ACTH
Energy, Supportive Nutrients, and Exercise 255
Creatine Phosphate255
Carbohydrate Metabolism and Exercise256
Muscle Carbohydrate Utilization258
Maintaining Blood Glucose Levels
During Exercise
Cori Cycle
Alanine Cycle
Carbohydrate Oxidation During Exercise
Glycogen Stores and Exercise
Carbohydrate Consumption Before, During, and After Exercise260
Carbohydrate Supercompensation
(Glycogen Loading)261
Triglyceride and Fatty Acid Metabolism
and Exercise
Fat Stores and Exercise
Fatty Acid Oxidation in Muscle
Exercise and Fat Utilization
Fat Utilization After Exercise
Protein and Amino Acid Metabolism and Exercise
Effect of Resistance Exercise and Postworkout
Nutrition on Net Muscle Protein Turnover
Effect of Endurance Exercise and Postworkout Nutrition on Net Muscle Protein Turnover
Muscle Amino Acid Metabolism During
Exercise
General Protein Recommendations
Water and Exercise
Dehydration and Performance
Water Recommendations for Athletic Performance
Vitamins, Minerals, and Exercise
Here's What You Have Learned
Suggested Reading 271

Chapter 10 Fat-Soluble Vitamins 273

Introduction	. 274
Water and Fat Solubility	274
Vitamin A	
Dietary Sources of Vitamin A and Carotenoids	275
Digestion and Absorption of Vitamin A	
and Carotenoids	275
Implications of β -Carotene Cleavage	
and Associated Enzymes	
Plasma Transport of Vitamin A and Carotenoids	
Storage of Vitamin A and Cell Binding Proteins	
Functions of Vitamin A and Carotenoids	
Vision.	
Cell Differentiation	
Cancer	
Glycoproteins	
Reproduction	
Antioxidant Capacity	
Nutrient Relationships for Vitamin A	20
and Carotenoids	284
Excretion of Vitamin A and Carotenoids	
Recommended Levels of Vitamin A Intake	
Vitamin A Toxicity	
Vitamin D.	
Sources of Vitamin D	
Absorption and Transport of Dietary Vitamin D	
Metabolism of Vitamin D	
Vitamin D Receptor and non-Genomic Functions	28.
Recommended Levels of Vitamin D Intake	200
Vitamin D Deficiency	
	. 292
Food Sources of Vitamin E	
Vitamin E Absorption and Transport	
Vitamin E Storage and Excretion	
Function of Vitamin E	
Recommended Levels of Vitamin E Intake	
Vitamin E Deficiency Vitamin E and Other Fat Soluble Vitamins in the	296
Development of Alzheimer's Disease	20/
•	
Vitamin E Toxicity	
Vitamin K	
Sources of Vitamin K	
Absorption and Transport of Vitamin K	
Functions of Vitamin K	
The Vitamin K Cycle	
Recommended Levels of Vitamin K Intake	

x Contents

Here's What You Have Learned	302
Suggested Reading	303

Introduction	. 306
Vitamin C (Ascorbic Acid)	. 306
Food Sources of Vitamin C	308
Absorption of Vitamin C	308
Functions of Vitamin C	309
Recommended Levels of Vitamin C Intake	309
Vitamin C Deficiency	311
Vitamin C Toxicity	311
Thiamin, Riboflavin, Niacin, and Vitamin B ₆	
Thiamin (Vitamin B ₁)	
Dietary Sources of Thiamin	
Digestion, Absorption, and Transport of Thiamin	
Metabolism and Functions of Thiamin	
Recommended Levels for Thiamin Intake	
Thiamin Deficiency	
Thiamin Toxicity	
Riboflavin (Vitamin B ₂)	
Dietary Sources of Riboflavin	
Absorption and Transport of Riboflavin	318
Metabolism and Roles of Riboflavin	318
Recommended Levels of Riboflavin Intake	319
Riboflavin Deficiency and Toxicity	319
Niacin (Vitamin B ₃)	. 319
Sources of Niacin	
Digestion and Absorption of Niacin	.321
Metabolism and Functions of Niacin	.321
Recommended Levels for Niacin Intake	. 322
Niacin Deficiency	. 322
Pharmacologic Use of Niacin and Toxicity	. 322
Vitamin B ₆	323
Food Sources of Vitamin B ₆	. 323
Absorption of Vitamin B_6	. 324
Metabolism and Function of Vitamin B_6	.324
Recommended Levels of Vitamin B ₆ Intake	.327
Vitamin B ₆ Deficiency and Toxicity	327
Folate, Vitamin B ₁₂ , Biotin, and Pantothenic Acid.	. 328
Folic Acid (Folate).	
Dietary Sources of Folate	
Absorption of Folate	. 328

Vitamin B ₁₂	332
Food Sources, Digestion, and Absorption	
of Vitamin B ₁₂	
Metabolism and Function of Vitamin B_{12}	333
Recommended Levels of Vitamin B ₁₂ Intake	335
Vitamin B ₁₂ Deficiency	335
Biotin	337
Sources of Biotin	337
Digestion and Absorption of Biotin	337
Metabolism and Function of Biotin	337
Recommended Levels for Biotin Intake	338
Biotin Deficiency and Toxicity	338
Pantothenic Acid	338
Food Sources of Pantothenic Acid	339
Digestion and Absorption of	
Pantothenic Acid	339
Metabolism and Function of	
Pantothenic Acid	339
Recommended Levels of Pantothenic	2.40
Acid Intake	340
Deficiency and Toxicity of Pantothenic Acid	340
Here's What You Have Learned	
Suggested Reading	342
Chapter 12 Major Minerals	345
Introduction	
Calcium	
	≺/6

Dietary Calcium Sources	
Calcium Absorption	347
Blood Calcium Levels and Homeostasis	
Physiologic Roles of Calcium	349
Recommended Levels for Calcium Intake	
Calcium Deficiency	353
Calcium Toxicity	354
Phosphorus	354
Dietary Phosphorus Sources	354
Digestion and Absorption of Phosphorus	354
Serum Phosphorus Levels and Homeostasis	355
Physiologic Roles of Phosphorus	356
Recommended Levels of Phosphorus Intake	357
Phosphorus Deficiency and Toxicity	
Magnesium	357
Dietary Magnesium Sources	357
Magnesium Absorption	357
Tissue Magnesium Content and Excretion	358
Physiologic Roles of Magnesium	359

Sodium, Chloride, and Potassium 361
Dietary Sources of Sodium,
Potassium, and Chloride
Absorption of Sodium, Potassium,
and Chloride
Tissue, Urinary, and Sweat Content of Sodium,
Potassium, and Chloride
Physiologic Functions of Sodium, Potassium,
and Chloride
Recommended Levels of Intake for Sodium,
Potassium, and Chloride
Deficiency, Toxicity, and Health Concerns
for Sodium, Potassium, and Chloride
Sulfur
Here's What You Have Learned
Suggested Reading 370

Chapter 13 Minor Minerals 373

Introduction
Iron
Dietary Sources of Iron and Iron Absorption374
Dietary Iron and Availability
Dietary Components That Effect Absorption
Iron Absorption Proteins
and Mechanisms
Iron Homeostasis
Metabolism and Function of Iron
Hemoglobin
Iron Storage Proteins
Transferrin
Cellular Iron Control
<i>Enzyme Activity</i>
Recommended Levels of Intake for Iron
Iron Deficiency
Iron Toxicity (Overload)
Conditions Under Which Iron Toxicity Occurs
Mechanism of Iron Toxicity
Iron Toxicity and Diseases
Zinc
Dietary Zinc and Absorption
<i>Food Sources</i>
Dietary Factors That Affect Zinc Absorption
Zinc Absorption Proteins and Mechanism
Metabolism and Function of Zinc
Overall Metabolism
Function of Zinc-Containing Proteins
Zinc Excretion
Recommended Levels of Intake of Zinc
Zinc Deficiency

Dietary Sources of Iodide	391
Absorption of lodide	392
Metabolism and Function of lodide	392
Recommended Levels for lodide Intake	393
lodide Deficiency	394
Copper	. 395
Dietary Copper and Absorption	395
Food Sources	
Dietary Factors That Affect Copper Absorption .	395
Metabolism and Function of Copper	397
Copper Transport Proteins and Cell Distribution	399
Recommended Levels of Intake for Copper	399
Copper Deficiency	399
Genetic Anomalies Influencing Copper Status	399
Selenium	. 401
Dietary Selenium	401
Absorption of Selenium	401
Metabolism and Function of Selenium	401
Selenium Incorporation into Proteins	403
Relationships Among Selenium and	
Other Nutrients	404
Recommended Levels of Intake for Selenium	404
Selenium Deficiency	404
Selenium Toxicity	405
Fluoride	. 406
Dietary Sources of Fluoride	406
Absorption of Fluoride	406
Metabolism and Function of Fluoride	407
Recommended Levels for Fluoride Intake	
and Fluoride Toxicity Concerns	408
Chromium	. 408
Dietary Chromium	408
Absorption of Chromium	408
Metabolism and Function of Chromium	409
Recommended Levels of Intake for Chromium	
and Chromium Imbalance	410
Manganese	. 410
Dietary Sources of Manganese	410
Absorption of Manganese	410
Metabolism and Function of Manganese	410
Recommended Levels of Intake	
and Manganese Imbalance	411
Ultratrace Minerals	. 411
Cobalt	411
Boron	411
Dietary Sources and Absorption	
of Boron	
Metabolism and Function of Boron	411
Recommended Levels of Boron Intake and Boron Imbalance	412

xii Contents

Molybdenum
Dietary Sources and Absorption of Molybdenum 412
Metabolism and Function of Molybdenum
Recommended Levels of Molybdenum Intake
and Imbalances
Vanadium412
Dietary Sources and Absorption of Vanadium 413
Metabolism and Function of Vanadium
Recommended Levels of Vanadium
Intake and Vanadium Imbalances
Nickel
Arsenic
Silicon414
Here's What You Have Learned 415
Suggested Reading 416

Chapter 14 Nutraceuticals and Functional Foods. 419

Introduction
Defining Nutraceuticals and Functional Foods 420
Organizational Systems for Nutraceuticals and
Functional Foods 421

Food Sources	121
Mechanism of Action	424
Health Claims	126
Organization of Nutraceuticals by Molecular	
Structure 4	-28
Isoprenoid Derivatives (Terpenoids)	129
Phenolic Compounds	130
Carbohydrates and Carbohydrate Derivatives4	133
Fatty Acids and Structural Lipids	134
Protein, Amino Acids, and Amino	
Acid Derivatives4	134
Minerals	134
Microbes (Probiotics)	135
Here's What You Have Learned 4	-36
Suggested Reading 4	-36

Glossary	• • • • • • •	 • • • • • • • • •	• • • • • • • • • • •	439
Index	•••••	 		455

Preface

© shotty/Shuttersto

In the preface to the last two editions, we posed the question, "Why a book on advanced human nutrition?" We responded that there was, and continues to be, a limited number of intermediate and advanced textbooks that detail why nutrients are important from a biochemical, physiologic, and molecular perspective. Today, the same shortage exists with the exception of *Advanced Human Nutrition*, whose initial success and adoptions exceeded our expectations.

Nutrition is a relatively new science, having evolved from several other scientific disciplines in the 20th century, and it continues to evolve today. The expansion of nutritional knowledge has been astounding. At the beginning of the 20th century, work conducted on food and food components was carried out by only a handful of scientists. As the 20th century progressed into its first few decades, many of the now well-known vitamins were discovered, their structures defined, and synthesis techniques developed. The metabolic mechanisms of macronutrients, particularly carbohydrates, lipids, and proteins, as well as energy metabolism in general, became the subject of intense research. The scientists who carried out such research came from a wide variety of disciplines, including organic and inorganic chemistry, agricultural chemistry, physiological chemistry, medicine, and animal sciences.

Originally, nutritional research was conducted by men and women simply for the love of science. Later, during the 1940s, the federal government took a more active role in scientific research, including nutrition. A high rate of rejection of military conscripts due to nutrition-related conditions prompted the establishment of the first U.S. Recommended Dietary Allowances (RDAs) in 1941. The RDAs have continued to be modified ever since; the Dietary Reference Intakes (DRIs) are the most recent version.

Research had been carried out with the indirect support of the federal government before the establishment of the RDAs. Nutrition research occurred at the land-grant institutions created by Abraham Lincoln in the 1860s through the Morrill Act. Modern nutrition evolved from agricultural, medical, and basic sciences into a discipline of its own. One of the early fathers of nutrition was a Kansas native, E. V. McCollum, who introduced the laboratory rat as a useful model in scientific research when studying vitamin A. Similarly, poultry scientists used chicks as a research model and made contributions to medical sciences. Much of the research on fiber began with animal scientists studying forages and feeds of livestock.

Research pertaining to minerals, their composition in the human diet, and their physiologic roles took form in the 20th century. Most of the earlier mineral research efforts focused on the major minerals, such as calcium, phosphorus, sodium, potassium, chloride, and magnesium. However, some work relating to the role of iron and the development of iron deficiency appeared in the earlier decades of the 20th century.

In the 1960s and 1970s, rapid advances in technology allowed for the ability to detect small quantities of trace minerals, such as selenium, zinc, copper, iron, fluoride, chromium, manganese, and iodine. Although the role of iodine in preventing goiters was already known, as was the potential for deleterious health effects from selenium toxicity, there was limited information on the role of many trace elements in optimizing human health. New technologies, such as neutron activation and atomic absorption spectrophotometry, allowed for detection of trace minerals in the part-per-billion or microgram-per-liter range. An explosion of knowledge regarding trace minerals occurred in the latter part of the 20th century.

As the 20th century came to a close, it was known that many nutrients functioned at the gene level, an idea that was unheard of at the beginning of the 20th century. Today, in the 21st century, new research was and is currently being carried out on the identification of new compounds in the diet, such as plant chemicals (phytochemicals). This area has led to the identification of compounds that promote health and prevent disease.

Approach of this Text

In all of our previous editions, we sought to use a conversational approach in our writing to allow the reader to better grasp nutritional concepts, as opposed to the more encyclopedic writing style common among advanced texts in science disciplines. We have been mindful of pedagogical tools that facilitate student learning. Many students have not mastered the optimal manner in which to read a textbook compared with literary works. A student needs to comprehend what he or she reads. Each chapter contains a series of "Before You Go On..." features in which the reader is asked a series of questions that can be answered from the material covered in the previous section. This tool can be used to help the student comprehend and focus on what is important in the text and to develop better study skills. The student is urged to answer each of the questions before proceeding with the next section of the chapter.

In the third edition of the text, two additional chapters were developed: one on fiber, which was previously part of the carbohydrates chapter; and a second on nutraceuticals and functional foods. Nutraceuticals-nutrients in foods that provide physiologic benefit beyond basic daily needs and/or support disease prevention or treatment-have been studied extensively in the last 15 years, and much has been discovered about their health benefits and mechanism of action. Fiber is one group of phytochemicals (plant-based nutraceuticals) where this information has expanded. Phytochemicals have been used to develop and produce functional foods either as supplements or as food. Thus, separate, in-depth attention to each of these still-evolving topics is needed for the student of nutrition to stay current. We include updated material to these two chapters.

As we did in previous editions, chapters are developed further by combining the scientific basis of why the basic nutrients are required with some applied concepts throughout. We accomplished this by integrating "Special Features" on focused topics to add depth to the chapters and to allow the student to view applications of the basic science. New special features have been added to this edition and existing ones have been updated based on new information in the scientific literature. The first edition was designed both as a textbook and a reference book, but the second, third, and now fourth editions are clearly designed as textbooks for college-level courses in human nutrition. The book assumes that students have completed courses in introductory nutrition, biochemistry, and some anatomy and physiology. Many students who are dietetics and nutrition majors, or who are beginning Master of Science degrees, will find this book appropriate for their level.

We have updated the figures and redesigned the text with the student in mind so that visual and textual, comprehension and study tools are available to reinforce concepts. This new edition has even more figures than the *Third Edition*; these were added after consultation with professors throughout the United States who are actively teaching advanced human nutrition courses, some of whom had been using the previous editions and some of whom had not. The goal here was to broaden the scope of concepts deemed significant for the student to comprehend. However, we took extra care to design the figures to balance simplicity with sufficient detail needed for an advanced treatment of the content.

Organization of this Text

Chapter 1 starts with an overview of the cell and examples of how nutrition can play a role in human health. Chapter 2 is aimed at a rigorous review of the anatomy and physiology of digestion. Both of these chapters are the foundation on which the rest of the book is built. Chapter 3 focuses on carbohydrates. However, as in the previous edition, fiber is discussed separately in Chapter 4. Chapters 5 and 6 focus on lipids and proteins, respectively, with the latter becoming one of the highest profile nutrient areas at this time. Chapter 7 focuses on water as a separate nutrient because it is present in our bodies in the largest quantity of all nutrients. Chapters 8 and 9 focus on energy, weight control, and exercise. Chapters 10 and 11 are detailed discussions of the fat-soluble and water-soluble vitamins, respectively. The text proceeds with two chapters on minerals: Chapter 12 on major minerals and Chapter 13 on minor minerals. We have added quite a bit of updated information to Chapters 10 through 13 in response to our peer reviewers. Chapter 14, titled, "Nutraceuticals and Functional Foods," proved to be popular by adopters in the Third Edition. There have been scores of textbooks written on this topic. For this text, the focus was on understanding what constitutes nutraceuticals and functional foods, how they can be classified, and the nutrient categories of various types.

New to the Fourth Edition

Some of the most significant updates to the *Fourth Edition* include the following:

Each chapter concludes with a section titled, "Clinical Insights," in which a topic of clinical relevance is presented, linking the basic nutrition science covered in each chapter. Future clinicians will find this useful in connecting the basic and applied elements of human nutrition and dietetics, better preparing each student for future courses in clinical nutrition.

- The use of gene editing (referred to as CRISPR) is discussed in Chapter 1, as this technology has the potential to correct genetic mutations that impact nutrition utilization and metabolism.
- Diseases of the gastrointestinal tract that have nutritional relevance in health and disease are now covered in Chapter 2.
- Bariatric surgery procedures used to treat obesity are discussed in Chapter 2, as their popularity has increased in tandem with some potential nutrition problems.
- The controversy of a possible contributing factor to the obesity epidemic due to increased linoleic acid intake is debated in one of the Special Features in Chapter 5.
- Alcohol, as related to disease, is covered in Chapter 5.
- The new American Heart Association and American College of Cardiology algorithms to determine the risk of a cardiac event are included in Chapter 5.
- Protein requirements have been challenged by some scientists as it relates to the RDA, and Chapter 6 incorporates coverage of this controversy. Newly available methods that determine nitrogen requirements compared with traditional nitrogen balance methods have led some to conclude that the RDA for protein should be increased significantly.
- Protein intake, physical activity, and sarcopenia are discussed in Chapter 6.
- Clinical signs and treatment of dehydration are covered in Chapter 7.
- Energy requirements, as estimated by several different algorithms used in clinical settings, are included in Chapter 8.
- Exercise recommendations for both endurance and weight-bearing exercises are featured in Chapter 9.
- The implications of β-carotene cleavage by different enzymes in the small intestine are covered in Chapter 10.
- Coverage of the role of fat-soluble vitamins, particularly vitamin E, in Alzheimer's disease is included in Chapter 10.
- Transport mechanisms for water-soluble vitamins are discussed in Chapter 11.
- Novel roles of phosphorus in nutrition are featured in Chapter 12.

The health-promoting effects of a group of phytochemicals—stilbenes—are now discussed in Chapter 14.

Instructor Resources

Comprehensive online teaching resources are available to instructors adopting the *Fourth Edition*, including the following:

- LMS-ready Test Bank, featuring more than 550 questions. This represents an increase of more than 100 questions compared with the previous edition. The level of rigor for each question is now indicated.
- Instructor's Manual, including Learning Objectives, Key Terms, Chapter Outlines, Discussion Questions, Lecture Notes, and In-class Activities. These have been heavily revised from previous editions.
- Slides in PowerPoint format, containing more than 750 slides that can be adapted for in-class lectures. For each topic, sample lectures with PowerPoint slides are included to help save time for the instructor in preparation of class materials. These lectures can be modified easily for each instructor's unique needs.
- Image Bank in PowerPoint format, compiling the figures appearing in this text.

In Conclusion

The order and content of information presented in this book are typical of the curricula at most academic institutions where nutrition and dietetics are taught. Both authors have had experience teaching this information in advanced nutrition courses and the materials included come from years of experience. We expect this course to provide students with the necessary skills and background to pursue higher-level nutrition classes; it can also serve as a capstone class. As we stated in the prefaces of previous editions, we continue to believe that students who use this text will go on to research careers in nutrition, perhaps even making contributions to the field that we will then cover in future editions of this text. There are those who used the First Edition of this book and went on to have research careers in nutrition and dietetics, and their findings are reported in this edition. We certainly look forward to and encourage such important works from future students.

> Denis M. Medeiros Robert E. C. Wildman

Acknowledgments

The authors would like to thank the following reviewers for their thoughtful critiques, expert knowledge, and constructive suggestions, which have helped us in improving this edition.

Elizabeth Cuervo, MD

shotty/Shutter

Professor Florida National University Miami, FL

Patricia Davidson, DCN, RDN, CDE, LDN, FAND

Assistant Professor West Chester University West Chester, PA

Michael A. Dunn, PhD

Associate Professor University of Hawaii at Manoa Honolulu, HI

James Gerber, MS, DC

Associate Professor Western States Chiropractic College Adjunct Faculty University of Bridgeport Bridgeport, CT

Amber Haroldson, PhD, RD

Assistant Professor Ball State University Muncie, IN

Jasminka llich, PhD, RD Professor Florida State University Tallahassee, FL

Monica Lebre, MS, RDN, LDN

Adjunct Lecturer Northeastern University Boston, MA

Dingbo Lin, PhD

Assistant Professor Oklahoma State University Stillwater, OK

Pei-Yang Liu, PhD, RD, LD

Assistant Professor University of Akron Akron, OH

Mindy Maziarz, PhD, RDN, LD

Assistant Professor Texas Woman's University Houston, TX

Susan Muller, PhD

Professor Stephens College Columbia, MO

Nina Roofe, PhD, RDN, LD, FAND

Dietetic Internship Director and Assistant Professor University of Central Arkansas Conway, AR

Robert B. Rucker, PhD

Distinguished Professor Emeritus Department of Nutrition and Department of Internal Medicine University of California, Davis Davis, CA

About the Authors

© shotty/Shuttersto

Denis M. Medeiros, PhD, RD, LD, received his PhD in nutrition from Clemson University in 1981, his MS in physiology from Illinois State University in 1976, and his BS degree from Central Connecticut State University in 1974. He has been on the faculties of Mississippi State University (1981-1984), the University of Wyoming (1984–1989), The Ohio State University (1989–2000), and Kansas State University (2000-2011). He is currently Dean Emeritus of the Graduate School and Professor Emeritus of Molecular Biology and Biochemistry at the University of Missouri at Kansas City. Formerly, Dr. Medeiros was full professor and head of the Department of Human Nutrition, as well as associate dean for scholarship and research, at Kansas State University. He holds the rank of Professor Emeritus of Food, Nutrition, Dietetics, and Health and Associate Dean Emeritus for Scholarship and Research at Kansas State University. He was a former associate dean for research and dean of the College of Human Ecology at The Ohio State University. He has also spent time as a visiting faculty member at the Medical University of South Carolina in Charleston, South Carolina, and at the Washington University School of Medicine in St. Louis, Missouri.

Dr. Medeiros's major research has focused on the role of trace minerals, particularly copper, on the integrity of the cardiovascular system, and on the role of iron in bone integrity. He has received more than \$4 million in grants to support his research endeavors from such institutions as the National Institutes of Health, the U.S. Department of Agriculture, and the National Science Foundation. He has authored or coauthored more than 125 scientific peer-refereed articles. Additionally, he has served on numerous editorial boards of prominent journals and has held elective offices in scientific societies. He has taught classes, both at the introductory and advanced levels, for undergraduate students and has taught graduate-level courses throughout his career. In addition, Dr. Medeiros has received outstanding teaching awards for his efforts and is both a registered and licensed dietitian.

Robert E. C. Wildman, PhD, RD, LD, FISSN, received his PhD in human nutrition from The Ohio State University, his MS in foods and nutrition from The Florida State University, and his BS in dietetics and nutrition from the University of Pittsburgh. He is a fellow of the International Society of Sports Nutrition (ISSN) and is an adjunct faculty member in the Department of Food Science and Human Nutrition at Texas Woman's University in Denton, Texas. His major areas of research include nutrition application to metabolism, body composition, weight control and health, and athletic performance. He has authored or coauthored more than 30 papers and several nutrition books, including The Nutritionist: Food, Nutrition, and Optimal Health and Sport and Fitness Nutrition; he also edited the Handbook of Nutraceuticals and Functional Foods. Dr. Wildman is a registered and licensed dietitian with the Academy of Nutrition and Dietetics and is the creator of TheNutritionDr.com.

CHAPTER 1

Foundations of the Human Body

HERE'S WHERE YOU ARE GOING →

- 1. The human body is composed, in some fashion, of 27 of more than 100 existing elements.
- 2. The basic unit of life from a nutritional perspective is the cell.
- 3. Cell components have specialized functions, all of which affect nutritional utilization.
- 4. Cell proteins have specialized functions, including serving as enzymes, receptors, transporters, and hormones.
- 5. Not all tissues are created equal. There are more than 200 cell types with the same DNA but with different functions and nutrient requirements.

Introduction

Undeniably, nutrition is of primary importance to the anatomic and physiologic development and maintenance of the human body. This complex multicellular entity consists of organ systems and tissue working together to support growth, maturation, defense, and reproduction. From an evolutionary perspective, humans developed into bipedal primates endowed with enormously expanded cerebral hemispheres, particularly the frontal lobes, which are responsible for intelligent behavior and muscular dexterity. Those characteristics allow humans to move with agility in various directions, investigate their environment, and understand and learn complex behaviors. They also allow humans, unlike other animals, the potential to investigate and comprehend the importance of their own nutrition. In a basic sense, humans are inhalation units, food processors, combustion units for energy molecules as well as storage facilities for excessive energy; and they possess waste removal and defensive systems, internal and external communication systems, locomotive capabilities, and have reproductive capabilities. All of those functions are founded on or influenced by nutritional intake.

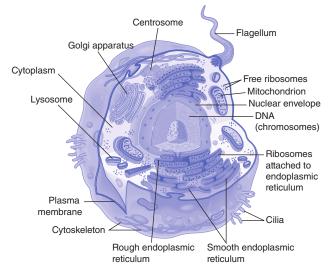
Humans comprehend how to nourish the demands of the human body; at the very least, a basic understanding of just what it is that needs to be nourished. But where does one begin to understand this? Perhaps, the most obvious starting point is at the cellular level. Although it is indeed easier for humans to think of themselves as a single unit, the truth of the matter is that a human being is a compilation of some 60 to 100 trillion cells. Every one of those cells is a living entity engaging in homeostatic operations to support self-preservation, while in some manner, concurrently engaging in homeostatic mechanisms for the human body as a whole. Each cell is metabolically active, and thus requires nourishment, while, at the same time, produces waste. Therefore, nutrition cannot merely be defined as the study of the nourishment of the human body; rather, it is the nourishment of individual cells and the tissues and organs they make up. An understanding of nutrition also needs to go beyond the living or viable portions of the body to recognize the building blocks of cells themselvesnamely, elements and molecules.

Elements and Molecules

Of the more than 100 elements known at this time, the human body uses approximately 27. Oxygen is the most abundant element in the human body, accounting for approximately 63% of its mass. Carbon (18%), hydrogen (9%), and nitrogen (3%) follow oxygen in decreasing order of abundance (**TABLE 1.1**). Carbon, hydrogen, oxygen, and nitrogen atoms are foundations for the most abundant types of molecules in the body, namely, water, proteins, lipids, carbohydrates, and nucleic acids. Water typically accounts for about

TABLE 1.1 Elements of the Human Body					
Major Elements ^a			Trace El	ements ^b	
Oxygen	63.0%	Potassium	0.4%	Silicon	Boron
Carbon	18.0%	Sulfur	0.3%	Aluminum	Selenium
Hydrogen	9.0%	Sodium	0.2%	Iron	Chromium
Nitrogen	3.0%	Chloride	0.1%	Manganese	Cobalt
Calcium	1.5%	Magnesium	0.1%	Fluorine	Arsenic
Phosphorous	1.0%			Vanadium	Molybdenum
				lodine	Zinc
				Tin	Copper

^aPercentages indicate the percentage of body mass composed of a particular element. ^bEach trace element contributes less than 0.01% to total body mass.


TABLE 1.2 Theoretical Contributors to Body Weightfor a Lean Man and Woman			
Component	Man (%)	Woman (%)	
Water	62	59	
Fat	16	22	
Protein	16	14	
Minerals	6	5	
Carbohydrate	<1	<1	
Total	100	100	

55% to 65% of human mass, whereas proteins and lipids collectively may contribute about 30% to 45%. Finally, nucleic acids, carbohydrates, and other organic molecules contribute about 1% or so to human mass. The remaining portion of the body, approximately 5%, is largely composed of minerals (**TABLE 1.2**).

With the exception of water, the major types of molecules forming the human body are complex and largely constructed of simpler molecules. For example, proteins are composed of **amino acids** linked by peptide bonds. **Deoxyribonucleic acid** (**DNA**) and **ribonucleic acid** (**RNA**) are assembled from nucleotides, which themselves are constructed from smaller molecules, namely purine and pyrimidine bases, phosphoric acid, and a carbohydrate (2-deoxy-d-ribose and d-ribose for DNA and RNA, respectively). **Triglycerides** (e.g., triacylglycerol) contain three **fatty acids** esterified to a glycerol molecule, and glucose molecules can be linked together by anhydride bonds to form the carbohydrate storage polymer glycogen.

Cell Structure and Organelles

Although there are over 200 different types of cells in the human body, each performing a unique or somewhat enhanced function, most of the basic structural and operational features are conserved among all cells. This means that although **skeletal muscle** cells and **adipocytes** (fat storage cells) may seem very different in many respects; including primary purpose, color, and shape; the most basic cellular structures and functions of both cell types are similar

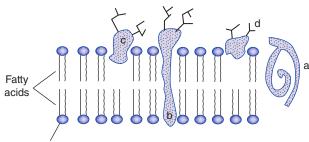
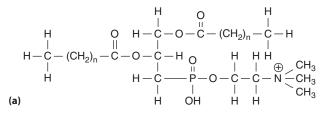
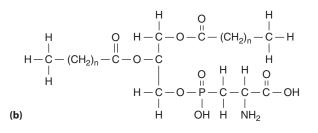


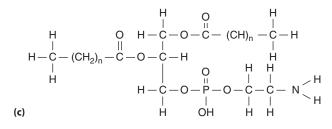
FIGURE 1.1 General Cell Structure. The figure shows the plasma membrane, cytoplasm, mitochondria, ribosomes, lysosomes, endoplasmic reticulum, Golgi apparatus, and the nuclear envelope.

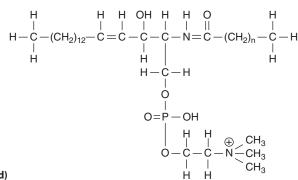
but with additional unique functions and roles (**FIGURE 1.1**). This allows us to discuss cells initially as a single entity, and then to expound the unique or highly specialized functions of specific cells in a later discussion.

Human cells have an average size of 5 to 10 micrometers and were first described using light microscopy. Light microscopy allows an imaging magnification of about 1500 times. However, it was not until the advent of electron microscopy that the finer details of cells' **organelles** and ultrastructural aspects were scrutinized. Electron microscopy has the potential to expand imaging magnification up to 250,000 times.

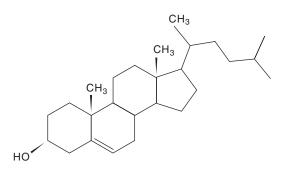

Enveloped in a fluid plasma membrane, the cell can be divided into two major parts: the nucleus and the cytoplasm. The plasma membrane is approximately 7.5 to 10 nanometers thick, and its approximate composition by mass is proteins, 55%; phospholipids, 25%; cholesterol, 13%; other lipids, 4%; and carbohydrates, 3%. The plasma membrane is arranged in a lipid bilayer structure, thus making the membrane merely two molecules thick (FIGURE 1.2). Phospholipids and cholesterol make up most of the lipid bilayer and are oriented so that their hydrophilic (water-soluble) portion faces the watery medium of the intracellular and extracellular fluids, and their hydrophobic (water-insoluble) portion faces the internal aspect of the bilayer. The major phospholipids in the plasma membrane can vary among cell types; however, they generally include phosphatidylcholine (lecithin), phosphatidylethanolamine,

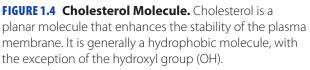



Phospholipid


FIGURE 1.2 Membrane Structure: The Fluid Mosaic.

A phospholipid bilayer (a) with associated proteins. Transmembrane proteins (b) can extend all the way through the membrane, such as the ion channel displayed. Peripheral proteins (c) are associated with only 1 side of the bilayer. Carbohydrate extensions (d) from membrane structures form the glycocalyx.




FIGURE 1.3 Phospholipid Molecular Structures. Phosphatidylcholine or lecithin (a), phosphatidylserine (b), phosphatidylethanolamine (c), and sphingomyelin (d).

phosphatidylserine, and sphingomyelin (**FIGURE 1.3**). Inositol phospholipids are functionally important in **cell signaling** operations; however, their quantitative contribution to plasma membrane lipid mass is relatively small. The hydrophobic inner region of the bilayer provides a transit barrier impermeable to hydrophilic substances such as ions, glucose, amino acids, and urea.

The plasma membrane of a small human cell may contain 10⁹ lipid molecules, approximately half of which are phospholipids. Cholesterol and glycolipids account for most of the remaining lipids. The planar cholesterol molecule is oriented so that its hydrophilic hydroxyl group is directed toward the polar ends of phospholipids and their hydrophobic steroid rings and hydrocarbon tail are directed toward the hydrophobic middle region of the plasma membrane bilayer (**FIGURE 1.4**). The concentration of cholesterol adds stability to the plasma membrane by preventing phospholipid fatty acid hydrocarbon chains from crystallizing.

Proteins are a major component of plasma membrane, accounting for about 55% of its mass. However, with respect to the molecular size differential between membrane proteins and lipids, the ratio of lipid to protein molecules is about 50 to 1. Cell membrane proteins occur either as integral or peripheral proteins that float within the bilayer. Integral, or transmembrane, proteins extend through the plasma membrane and function primarily as ion channels, carriers, active transporters, receptor bases, and enzymes. Typically, the portion of those proteins that extends through the hydrophobic core of the plasma membrane is composed mostly of amino acids with nonpolar side chains. Transmembrane proteins are mostly glycoproteins, with their carbohydrate moiety extending into the extracellular fluid. Peripheral proteins are typically associated with integral membrane proteins on the intracellular side of the plasma membrane, and their function is mostly enzymatic.

Carbohydrates, in the form of polysaccharides attached to plasma membrane proteins (glycoproteins) and lipids (glycolipids), along with proteoglycans make up the glycocalyx (see Figure 1.2). The glycocalyx provides a carbohydrate coat on the extracellular face of the plasma membrane that appears to be involved in receptor activities and cell-to-cell adhesion.

The plasma membrane encloses the cytoplasm, which is composed of the cytosol and organelles. The cytosol is a clear intracellular fluid containing several substances that are either dissolved, suspended, or anchored within the watery medium. These substances include electrolytes, proteins, glucose and glycogen, amino acids, and lipids. The concentration of those intracellular substances can differ tremendously from the extracellular fluid (TABLE 1.3). For example, the extracellular fluid may be 14 times more concentrated with sodium and 10 times less concentrated with potassium compared with the intracellular fluid. One function of integral membrane proteins is to pump certain substances against their concentration or diffusion gradients to maintain those differences for physiologic purposes.

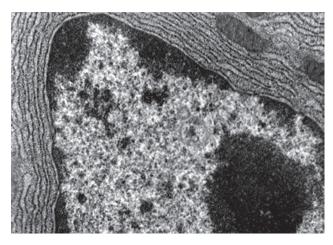
Many of the highly specialized operations that take place inside cells occur within membrane-contained organelles. Organelles include the endoplasmic reticulum, Golgi apparatus, lysosomes, peroxisomes, endosomes, and mitochondria. Although most types of cells contain all of those organelles or a highly

TABLE 1.3 Concentration Differences of General Solutes Across the Plasma Membrane ^a			
	Intracellular Fluid (mmol/L)	Extracellular Fluid (mmol/L)	
Sodium (Na+)	12	145	
Potassium (K+)	155	4	
Hydrogen (H+)	13×10^{-5}	3.8×10^{-5}	
Chloride (Cl-)	3.8	120	
Biocarbonate (HCO ₃)	8	27	
Organic anions (e.g., lactate)	155	Trace	

^aElectrolyte concentration across the skeletal muscle plasma membrane.

tion and Features
of most DNA and cription; site of rRNA uction
of most ATP synthesis in some DNA
ain acid hydroxylases for sting most biomolecule 5
nesizes proteins and substances destined to ported from cell; site ucose-6-phosphatase; cipates in ethanol bolism
ner processes molecules nesized in the endoplasmic ulum: packaging site for ytosis-destined molecules; nesizes some carbohydrates
ain oxidases; participate in nol metabolism
tures produced by hvagination of the cell abrane or Golgi body for adation or recycling

DNA, deoxyribonucleic acid; rRNA, ribosomal ribonucleic acid; ATP, adenosine triphosphate.


specialized version, the organelles' contribution to the total cell volume can vary. For example, myocytes (**muscle cells**) contain a rich complement of mitochondria, whereas the total surface area of endoplasmic reticulum in a **hepatocyte** (liver cell) is 30 to 40 times greater than the surface area of the plasma membrane. **TABLE 1.4** presents general functions associated with different organelles.

Endoplasmic Reticulum

The **endoplasmic reticulum** is a tubular network that is situated adjacent to the nuclei. In fact, the space inside the tubular network containing the endoplasmic reticulum matrix is connected to the space in between the two membranes of the nuclear envelope. The membrane of the endoplasmic reticulum is very similar to the plasma membrane, consisting of a lipid bilayer densely embedded with proteins. The endoplasmic reticulum is a major site of molecule formation and metabolic operations within cells.

Visually, the endoplasmic reticulum can be separated into the rough (granular) and smooth (agranular) endoplasmic reticulum due to the presence of ribosomal complexes attached to its outer surface. The electron micrograph in FIGURE 1.5 displays the ribosomal studding of the endoplasmic reticulum. The ribosomes of the rough endoplasmic reticulum are the site of synthesis for many proteins. As they are being synthesized, growing protein chains thread into the endoplasmic reticulum matrix, where they can undergo rapid glycosylation as well as cross-linking and folding to form more compact molecules. In general, proteins synthesized by the rough endoplasmic reticulum are destined for either exocytosis or to become part of the plasma or organelle membranes. In contrast, the smooth endoplasmic reticulum is a site of synthesis of several lipid molecules, including phospholipids and cholesterol. Once synthesized, those lipids become incorporated into the endoplasmic reticulum membrane, allowing for regeneration of the membrane lost in the form of transport vesicles destined for the Golgi apparatus.

Finally, the endoplasmic reticulum engages in other significant cellular operations. The endoplasmic reticulum of specific cells, such as the parenchyma of the liver and kidneys, contains glucose-6-phosphatase, which liberates glucose from glucose-6-phosphate generated by gluconeogenesis as well as glycogen breakdown for release from the cell. The endoplasmic

FIGURE 1.5 Rough Endoplasmic Reticulum. Electron micrograph of rough endoplasmic reticulum surrounding a nucleus (28,000×) showing the ribosomal studding. Courtey of Louisa Howard, Dartmouth College, Electron Microscope Facility.

reticulum is also the site of detoxification of potentially harmful substances, such as drugs and alcohol. The cytochrome P450 system is the primary site of detoxification operations in the endoplasmic reticulum.

Golgi Apparatus

The Golgi apparatus is composed of several stacked layers of thin, flat, enclosed vesicles and is located in close proximity to both the nucleus and the endoplasmic reticulum. It processes substances produced by the endoplasmic reticulum and also synthesizes some carbohydrates. The carbohydrates include sialic acid and galactose, as well as more complex polysaccharide protein-based molecules such as hyaluronic acid and chondroitin sulfate. Those are part of the proteoglycan component of mucous and glandular secretions, as well as being primary components of the organic matrix of connective tissue, such as bone, cartilage, and tendons. However, it is the molecule-processing and vesicle-formation activities of the Golgi apparatus that are without a doubt its most famous attributes. As molecules, especially proteins, are manufactured in the endoplasmic reticulum, they are transported throughout the tubular system and destined to reach the agranular portion in closest proximity to the Golgi apparatus. At this location, small transport vesicles pinch off and transport those substances to the Golgi apparatus (FIGURE 1.6). The vesicles introduce their cargo to the Golgi apparatus by fusing with its membrane.

Once inside the Golgi apparatus, endoplasmic reticulum-derived molecules, which are primarily proteins, can have more carbohydrate moieties added and become incorporated into highly concentrated packets. Eventually, the packets will bud off the Golgi apparatus and diffuse into the cytosol. The packets are then ready to fuse with the plasma membrane to form endosomes (described below) and release their contents into the extracellular space in an exocytotic process. Because of this activity, those packets are

Three-dimensional view

Transverse view

FIGURE 1.6 Golgi Apparatus. Budding of vesicles from the plasma membrane face of the Golgi apparatus. The vesicles generally contain substances that will be secreted from the cell.

often referred to as secretory vesicles or secretory granules. Cells with greater endocrine, exocrine, paracrine, and autocrine activities, such as the pancreas, adrenal glands, and anterior pituitary gland, will show more secretory vesicles when observed with electron microscopy. The contents of those packets may be **hormones**, neurotransmitters, eicosanoids, or ductal secretions. Some of the concentrated packets are not destined for exocytosis; however, because highly

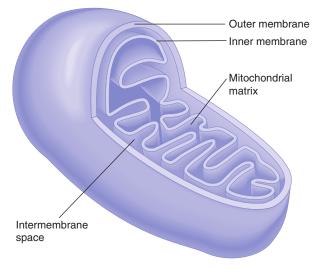
specialized buds from the Golgi apparatus become

Endosomes, Lysosomes, and Peroxisomes

lysosomes.

Endosomes are produced by an invagination of the cell membrane to transport a variety of compounds (usually lysosomes) for degradation. These structures may also be produced by the Golgi body. Endosomes can transfer materials to the cell membrane for recycling. A good example of this is in the regulation of low-density lipoprotein (LDL). LDL-cholesterol binds to a cell receptor, and the complex is then internalized within the cell in the form of an endosome. The LDL-cholesterol is removed and processed in the lysosome, and the receptor is recycled back to the cell membrane surface for reutilization. Those structures are in many ways responsible for sorting materials within the cell to other cellular organelles or components. The mature endosome is approximately 500 nanometers in diameter.

Lysosomes, which are typically between 250 and 750 nanometers in diameter and loaded with hydrolytic enzyme-containing granules, function as an intracellular digestive system. More than 50 different acid hydroxylases have been found in lysosomes and are involved in digesting various proteins, nucleic acids, mucopolysaccharides, lipids, and glycogen. Lysosomes are very important in cells such as macrophages.


Peroxisomes appear to be produced by specialized buddings of the smooth endoplasmic reticulum and contain oxidases that help detoxify potentially harmful substances. Peroxisomes also participate, to some degree, in ethanol (alcohol) oxidation and the oxidation of long-chain fatty acids.

Mitochondria

Aerobic adenosine triphosphate (ATP) generation takes place in **mitochondria**, self-replicating organelles found in almost every cell type in the human body (see Figure 1.1). Mitochondria can vary in size in different types of cells. In some cells, mitochondria may only be a few hundred nanometers in diameter, whereas in others, they may be as large as 1 micrometer in diameter and as long as 7 micrometers in length. The shape of mitochondria can also vary among cell types. For instance, mitochondria are spherical in brown adipose cells, sausage-shaped in muscle cells, and more oval in hepatocytes. The density of mitochondria within a cell type depends primarily on the oxidative energy demands of that cell. For instance, because of their dedication to the synthesis of chemical compounds, hepatocytes contain approximately 800 mitochondria per cell. Likewise, the high ATP demands of muscle cells also require a rich complement of mitochondria. Mitochondria account for approximately 25 to 35% and 12 to 15% of cardiac and skeletal myocyte volume, respectively.

Mitochondria tend to be located within cells in areas near organelles with high energy demands. Thus, mitochondria may typically appear in close proximity to the nucleus and ribosomes, where protein synthesis occurs, or near contractile myofibril in muscle cells. Also, triglyceride-rich lipid droplets are typically visualized adjacent to or at least in close proximity to mitochondria.

Mitochondria contain two lipid/protein bilayer membranes that are commonly called the outer membrane and the inner membrane (**FIGURE 1.7**). The outer membrane is very porous and is largely unfolded, whereas the inner membrane is relatively impermeable and highly folded, which greatly expands its surface area. Along with the other phospholipids common to cellular membranes, diphosphatidylglycerol or cardiolipin is found in mitochondrial membranes,

FIGURE 1.7 Mitochondrion. Note the inner and outer mitochondrial membranes.

particularly in the inner membrane. **Enzymes**, such as monoamine oxidase, acyl coenzyme A (acyl CoA) synthetase, glycerophosphate acyltransferase, and phospholipase A_2 are associated with the outer membrane, whereas adenylyl kinase and creatine kinase are found in the intermembrane space.

The inner mitochondrial membrane is the site of oxidative phosphorylation and contains enzymes and cytochrome complexes of the **electron transport chain**. It also provides a barrier enclosing the mitochondrial matrix. The mitochondrial matrix is concentrated with enzymes, largely involved in energy nutrient oxidation, and some DNA. For instance, the enzymes associated with fatty acid oxidation as well as the Krebs cycle are found in the mitochondrial matrix. Oxidative phosphorylation produces mainly ATP, using a series of oxidative enzyme complexes known as the electron transport or respiratory chain.

Mitochondrial biogenesis. The number of mitochondria in any given cell is not static. Some cells, such as those in cardiac tissue, have a high number of mitochondria, whereas cells in the brain have a low number. It could be that the heart relies more on fatty acids for energy, thus requiring more mitochondria. The brain, in contrast, requires more glucose to function, and thus does not need as many mitochondria because it does not prefer to use fatty acids as a source of energy. The creation of more mitochondria under selected conditions is called mitochondrial biogenesis. What are the molecular factors that cause mitochondrial biogenesis?

Mitochondria transcription factor A (mtTFA) is a major transcription factor governing mitochondrial DNA replication and transcription during mitochondrial biogenesis. A transcription factor is normally a protein that binds to the promoter of a gene to begin the process of mRNA synthesis that encodes for a specific protein. Low levels of mtTFA transcript and protein are associated with overall decreased mitochondrial gene transcription in cells. In contrast, expression of human mtTFA in yeast (Saccharomyces cerevisiae) devoid of mtTFA restores mitochondrial DNA transcription and function. Functional human mtTFA is a 25-kilodalton protein; its transcriptional activation initiates the synthesis of mitochondrial RNA by mitochondrial RNA polymerase.

The investigation of nuclear control of mitochondrial gene expression has led to the discovery of several other important transcription factors. Nuclear respiratory factor-1 (NRF-1) coordinates nuclear-encoded respiratory chain expression with mitochondrial gene transcription and replication. NRF-1 recognition sites have been found in many genes encoding respiratory functional subunits, such as rat cytochrome c oxidase subunit VIc and the bovine ATP synthase γ subunit. Therefore, NRF-1 activates mitochondrial gene expression by up-regulating mtTFA.

Another nuclear gene product, NRF-2, has also been implicated in the coordination between nuclear and mitochondrial gene expression. Although the majority of genes encoding proteins in respiratory functions have an NRF-1 recognition site, some genes (such as cytochrome c oxidase subunit IV and ATP synthase β subunit) lack an NRF-1 mitochondrial recognition site but contain a NRF-2 recognition site, indicating that these respiratory chain genes may be differentially regulated. In some genes, both NRF-1 and NRF-2 recognition sites have been identified. It is apparent that NRF-1 and NRF-2 may convey nuclear regulatory events to the mitochondria via mtTFA and coordinate the gene expression between the nuclear and mitochondrial genomes.

Peroxisomal proliferating activating receptor- γ coactivator (PGC-1) is thought to be a master regulator of mitochondrial biogenesis, and its interaction with mtTFA, NRF-1, and NRF-2 is the subject of investigation. This transcription factor has the ability to induce the production of mitochondria in brown adipose tissue. The various isoforms of PGC-1 constitute a family: PGC-1a, PGC-1B, and PGC-1related coactivators. Both PGC-1a and PGC-1B have high expression in tissues rich in mitochondria. Unlike some other transcription factors, PGC-1a does not bind to a DNA promoter directly. Rather, it acts via a protein-protein interaction but does not have enzymatic activity. Transfection of PGC-1a into C_2C_{12} cells (i.e., introduction of PGC-1 α into cells) and into myocytes results in turning on mitochondrial biogenesis. PGC-1 α may act as a coactivator of NRF-1, which then is thought to bind to the promoter of mtTFA to initiate the concomitant upregulation of both mitochondria- and nuclearencoded proteins in a coordinated fashion. Another set of transcription factors needed to initiate mitochondrial biogenesis is the transcription specificity factors (TFB1M and TFB2M). Recognition sites are present within the promoters for NRF-1 and NRF-2 for those two transcription factors. It has also been reported that PGC-1 α will up-regulate those two transcription factors. Upregulation of mtTFA augments mitochondrial biogenesis with those other transcription factors.

9

SPECIAL FEATURE 1.1

Newer Findings on Mitochondrial Diseases

Genetic, metabolic, and dietary events can result in mitochondrial diseases. Mitochondrial diseases may be due to basepair substitutions in the mitochondrial genome or may involve defects in the nuclear-encoded mitochondrial proteins. The mechanisms or proteins responsible for ferrying some mitochondrial proteins (chaperone proteins) synthesized in the cytoplasm to the mitochondria can also be defective, and the import of such proteins into the mitochondria can be impaired. All of these factors collectively can lead to mitochondrial dysfunction and pathology.

A number of mitochondrial diseases affect skeletal and cardiac muscle and peripheral and central nervous system tissue, particularly the brain, the liver, bone marrow, the endocrine and exocrine pancreas, the kidneys, and the intestines. Kearns-Sayre syndrome is a mitochondrial disease in which deletion of parts of NADH-coenzyme Q reductase (subunits III and IV), all of ATP synthase subunit VI, and part of ATP synthase subunit VIII occurs. The DNA responsible for encoding cytochrome c oxidase subunit IV is present, but not the DNA of mitochondria-encoded cytochrome c oxidase subunit II. Another disorder, myoclonus epilepsy with ragged red fibers (MERRF), affects both brain and muscle tissue. This disorder causes a notable decrease in cytochrome c oxidase subunit II protein but not in the mRNA. A child afflicted with Leigh syndrome revealed a disorder involving a nuclear mutation in cytochrome c oxidase, but all subunits were present to lesser degrees.

There have been several reports of defects in cytochrome c oxidase in patients suffering from cardiomyopathy, which is a type of heart disease where the muscle fails to contract. More recently, a copper chaperone protein, called SCO2, was found to be mutated in several forms of fatal infantile cardiomyopathy leading to cytochrome c oxidase deficiency. This protein ferries copper from one protein to SCO2, which inserts copper into the cytochrome c oxidase. Apparently, this protein is nonfunctional in some people. In another study, a patient with SCO2 mutations had severe hypertrophic cardiomyopathy that was reversed with copper-histidine supplementation.

BEFORE YOU GO ON ...

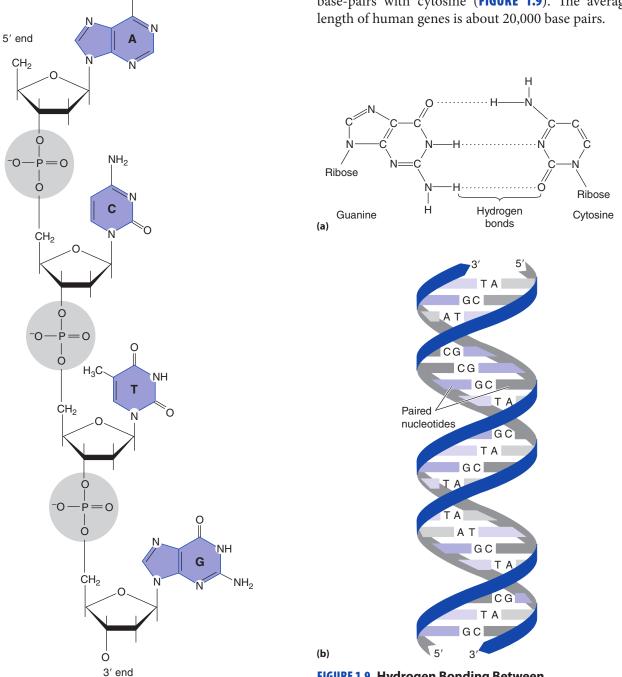
- 1. Which cell compound is important for cell signaling?
- 2. Where within the cell is it likely for carbohydrate and protein to join to become glycoproteins?
- 3. What are the major phospholipids in cell membranes?
- 4. In which cell structure would you most likely see cell detoxification occurring via the P450 pathway?
- 5. Name an organelle that has its own set of DNA.

The Nucleus and Genetic Aspects

The nucleus provides a storage and processing facility for DNA. It is enclosed by the porous nuclear envelope (see Figure 1.1), which is actually two separate membranes, the outer and inner. At certain regions, the outer nuclear membrane connects with the membrane of the endoplasmic reticulum. This allows the space between the two nuclear membranes to be continual with the matrix of the endoplasmic reticulum. Very large protein-associated pores penetrate the nuclear envelope, allowing molecules having a molecular weight of up to 44,000 daltons to move through the envelope with relative ease.

DNA, RNA, and Genes

By and large, the DNA contained within human cells is localized in the nucleus. Small amounts of DNA are also found in mitochondria. All mature human cells, with the exception of erythrocytes (red blood cells), contain 1 or more nuclei. As a rule, cells beget cells; therefore, all nucleated cells will contain the same DNA. Each DNA molecule contains a myriad of regions (genes) that code for proteins. Because digestion breaks down ingested food proteins into amino acids prior to absorption into the body, proteins must be constructed within cells from their building blocks-amino acids. Genes contain the instructions for the synthesis of all human proteins, including structural proteins, enzymes, contractile proteins, and protein hormones. Proteins are then involved, either directly or indirectly, in the **metabolism** of all other molecules in the human body.


DNA molecules are extremely long. It has been estimated that the longest human chromosome is over 7.2 centimeters long. Human cells contain 23 pairs of chromosomes (22 autosomal and 1 sex-linked), with the exception of sperm and eggs, which only have 1 of each of the 23 chromosomes. It has been estimated that the DNA in human chromosomes collectively codes for as many as 100,000 proteins.

Despite the fact that human DNA is a polymer consisting of billions of nucleotides linked together, there are only four nucleotide monomers (**FIGURE 1.8**). Adenine and guanine are purine bases, whereas thymine and cytosine are pyrimidine bases. The five-carbon carbohydrate deoxyribose is added to the bases to form adenosine (A), thymidine (T),

 NH_2

guanosine (G), and cytosine (C). Those structures, which are called nucleosides, are found in DNA in a phosphorylated form referred to as a nucleotide. DNA links of nucleotides can be written in a shorthand format, for example, ATGGATC.

DNA exists in human cells as double-stranded chains arranged in an antiparallel manner. That is, one DNA polymer runs in a 3' to 5' direction whereas the complementary stand runs in a 5' to 3' orientation. The strands are held together by complementary base pairing, whereby adenosine on 1 strand hydrogen bonds with thymidine on the other chain, and guanine base-pairs with cytosine (**FIGURE 1.9**). The average length of human genes is about 20,000 base pairs.

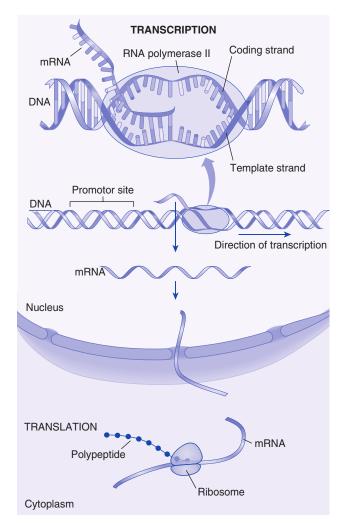


FIGURE 1.9 Hydrogen Bonding Between Complementary Nucleotide Bases. The hydrogenbond link between adenine and thymine (a), and hydrogen bonding between the double helical DNA strands (b).

Whereas DNA in the nucleus is substantial in quantity and strongly associated with histone proteins to form complex chromosomal structures, the DNA in mitochondria contains fewer than 17,000 base pairs and contains a very limited number of coding regions. Mitochondrial DNA contains genes for 13 of the 67 or so protein subunits of the respiratory chain as well as for **ribosomal RNA (rRNA)** and **transfer RNA (tRNA)**.

The processes of protein synthesis have to overcome a few obstacles. First, genes coding for proteins are located primarily within the nucleus. Meanwhile, ribosomal complexes, which are the apparatuses of protein synthesis, exist either within the cytosol or studding the endoplasmic reticulum. Thus, the information inherent to DNA must be delivered from one location to another. This obstacle is overcome by **messenger RNA (mRNA)**. Second, the amino acids necessary to synthesize proteins must be made available at the site of protein synthesis. This obstacle is overcome by tRNA. Amino acids are delivered to ribosomal complexes by tRNA and correctly oriented to allow their incorporation into growing protein chains (**FIGURE 1.10**).

FIGURE 1.10 Protein Synthesis. Diagram of major steps in synthesis of protein as directed by DNA.

Protein synthesis begins with **transcription**, the process of producing a strand of mRNA that is complementary to the DNA gene being expressed. First, the double-stranded DNA is temporarily opened at the site of the gene, and then ribonucleotides are sequentially base-paired to the DNA template. The process is catalyzed by RNA polymerase II and influenced and regulated by promoter and enhancer sequences of DNA occurring either prior to or after the coding region. The formation of the DNA-RNA complementary base-pairing is the same as for DNA-DNA base-pairing, with one exception: the pyrimidine base uracil (U) substitutes for thymine in base-pairing with adenine. In addition to the substitution of a uracil base for thymine, the nucleotides contain ribose instead of deoxyribose (TABLE 1.5).

The initial RNA strand created during transcription, called **heterogeneous nuclear RNA (hnRNA)**, is relatively large and generally unusable in this state. Therefore, the newly created hnRNA strand must undergo **posttranscriptional modification**, or change in the original molecule produced following transcription. Segments of the hnRNA strand that do not code for the final protein must be removed, and the remaining segments that do code for the final protein must be joined together. This process is called **splicing**; the removed segments are referred to as **introns**, and the remaining segments are **exons**. Furthermore, the RNA strand is modified at both ends.

The ribosomal complexes providing the site of protein synthesis must be constructed from RNA subunits. DNA contains specific regions that, when transcribed, produce RNA strands that are not used in instructing protein amino acid sequencing but rather are used to construct ribosomal complexes. The enzyme RNA polymerase I transcribes the rRNA 45S precursor, which undergoes a number of cleavages and ultimately produces 18S and 28S rRNA. The latter rRNA is hydrogen-bonded to a 5.8S rRNA molecule. Finally, a 5S rRNA is produced by RNA polymerase III. The 18S rRNA complexes with proteins to form the 40S ribosomal subunit, whereas the 28S, 5.8S, and 5S rRNA complex with proteins to form the 60S ribosomal subunit. The 40S and the 60S ribosomal subunits migrate through the nuclear pores and ultimately condense to

TABLE 1.5 Base-Pairing of Nucleic Acid Bases			
DNA-DNA	DNA-RNA		
A–T	A–U		
C-G	C-G		